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We show that proto-RGrenormaliation grouptheory can be used to give a systematic description of the
evolution of soltion of perturbed equations. The equations describing the deformation of its shape as the effect
of perturbation are proto-RG equations. The RG approach may be simpler than inverse scatteringSfhgory
and another approaches, because it dose not rely on any knowledge of IST. It is very concise and easy to

understand.
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[. INTRODUCTION ing a perturbation into account by rewriting them in terms of

multiple scale variable§'fast” and “slow” ). Then the time

The standard soliton equatiofidV, NLS and so ohare  dependence of the soliton parameters and the first-order cor-
highly idealized. In more realistic situations, it is important rection are readily available. The original work with impor-
to understand nonlinear evolution equations under the influtant contribution to the direct method by constructing a
ence of perturbationjd]. Several different approaches to the Green’s function process would be highly recommendgdd
analytic description of soliton dynamics in these perturbed In this paper, we perform a renormalization grolfG)
systems are known. The most powerful method to deal witlapproact 7] to the perturbed soliton equations and compare
these cases is based on I8fverse scattering theory2,3]. the result with other methods. One purpose of the present
The basic idea of IST is to represent a nonlinear evolutiorPaper is to demonstrate that an analytic description of the
equation for a functioru(x,t) in the form of the so-called €volution of a soliton, including the deformation of its shape,
Lax pair i A, I:t+[|:r A]=0, wherel andA are some can be given, and the equations describing the evolution of

linear operators with coefficients dependent on the functior%.he soliton amphtude and velocity as the effect of perturba-
. ; . . “tion are RG equations. The apparent advantage of the RG
u(x,t). First, we can solve the direct scattering problem, i.e.

_ o ) T ‘approach is that the starting point is simply a straightforward
solving the auxiliary linear equationsW=AV and Wi  najve perturbation expansion for which very littie priori
=AW. From the first equation we can find the scatteringknowledge is required. We also see that the RG approach
data, and from the second equation, we can find the temporatay be more efficient and concise in practice than other
evolution of the scattering data. Then we can construct thenethods.
functionu(x,t) on the basis of the scattering data, i.e., solve We also notice that the so-called proto-RG scheme has
the inverse scattering problem. The whole process is effedseen proposed recentf$,9]. The method does not need the
tive for integrable systems and it turns out that for any non-explicit perturbation solutions that are required in the stan-
linear evolution equation that is reasonably close to a nondard RG, so the process in this scheme is much simple than
linear evolution equation that can be exactly solved by ISTthe original standard RG. It is very natural to use the
the total evolution of the scattering data can be given angroto-RG scheme to deal with these perturbed soliton equa-
also be expanded in a perturbation expansion. That is to sajons. The present scheme has been illustrated with many
that we can perform a perturbation theory for the above twaxamples that involve only one zero eigenfunction in the
auxiliary linear equations. Thus one can determine the effectfirst-order equatiori8,9]. However, for these perturbed soli-
of perturbations such as small dissipations, relaxations, etcton equations, the zero eigenfunctions of the first-order equa-
on the evolution of these scattering data, and further, théon are usually degenerate, and we should consider some
effects on the soliton states. However, it is inconvenient tdmportant information about the source of the secular terms
use for one who is not familiar with IST. in this case when we employ the proto-RG method. The
Another alternative way to study soliton perturbations isother purpose of the our paper is to give some important
the so-called direct perturbation theory based on a standakskamples that are treated very well in the present version of
multiple scales procedurp4—6]. In this scheme, a basic proto-RG.
technical ingredient is to linearize original nonlinear equa- In Secs. II, Ill, and IV, the details of proto-RG perturba-
tions on the background of the unperturbed solution for taktive calculation are supplied for the perturbed time depen-
dent Ginzbury-Landa(dTDGL) equation, the perturbed KdV
equation, and the perturbed NLS equation. Section V closes
*Corresponding author. Email address: tutao@mail.ustc.edu.cn the paper with our conclusions and some expectations.
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Il. PROTO-RG FOR THE PERTURBED TDGL EQUATION if one knows the zero eigenfunction &f one can almost

We begin this section with the a simple description off€ad off the final result by inspection. .
proto-RG (See Refs[8,9], for those who wish to know the Now we use the above method to deal with the perturbed
details of the proto-RG method, the second Ref.of Shi-  1PGL equation
wa’s should be a good starting pojnEor a perturbed prob-

1
lem Ui —

Euxx—u+u3=sR[u]. 9

L(du=eN[u], @ The TDGL equation has a single-soliton solution

wherex denotes all the independent spatial and/or temporal

) . : =tanh =X— 1
variables, the unperturbed equation and the first-order equa- Uo(x,t)=tanhz, - z=x=xo, (10
tion are wherey, is the initial position.

. To proceed, we transfer the variables fr¢trx} to {t,z}
L(dx)uo=0 ) and perform ath perturbation to this equation,
and U=Uo(xo)+eUy(t,2)+ - -. (12)
L(a,)u;=N1[ug]. (3)  In the first order, we find
HereL is a linear differential operatoN is generally a non- [9—LJus=Ry[ug], (12
linear operator antﬁdl is the eth order terms of\. We can

o . where

write its perturbation result as
L1 1
U=ug(A)+eus(x)+---, (4 L=50t 1—3u§=§<922+3 sech z—2 (13

whereA denotes all the constants such as amplitude or phase . .
to be renormalized in the following. Here pro'?o—RG schrt)eme'S a self-adjoint operator anto(z) = V312 sech z is the
does not need the explicit expression of perturbation resulgero eigenfunction of [10]. We can introduce the renormal-
while the standard RG requires it. We introdu¢and renor-  ized xg:
malizedAr and denoteu,s as the singular terms af; with

variablesx replaced byX. Then the renormalized perturba- _ _ . n
tion series reads Xo=Z1(T)Xr 1+§1: Bne XRy (14
U=Uo(AR) T e[U1(X) —Ugs(X,X) ]+ - - -. (5)  and the renormalized result to the first order is
The proto-RG operato$ can be constructed as follows: u=ug(xr) +eluy(t) —uss(t,)]+- -, (15

We split the differential operators, to d,+dy in L and
subtract the original operator to makg=L(dy+dy)
—L(4y). Then combiné with the operatoP corresponding — xras sectfz+uy(t,7)=0. (16)

to the projection onto the null space bf Finally, identify The reader may wonder why we neglect the introduction
x= X in the result. The overall process defines the proto-RGy; 7 1 replacez in Uy, i.e., the spatial singular behavior is

where the renormalization constamt is chosen as

operatorS=PF. omitted in this case. For partial differential equation, we
We applyS to u; and from the first-order equatio®), ~ should consider the spatial as well as temporal singular be-
we can read the outcome as havior generally. In Refs[8] and [9], the authors discuss
space-time behavior of numerous examples such as Swift-
Sugs=[Na[uo]];, (6)  Hohenberg equation, etc. In those systems no spatial or tem-

poral constraints are imposed, therefore secular terms can
where[ ]; denotes the projection onto the null spacé oiVe ~ €merge in spatial as well as in temporal parts. However, in

can also applys to renormalized resulf5) and we obtain the evolqtlon equations of the present paper, we glwa_ys Seek
the solutions(of our interest which vanish in infinity, i.e.,

éuO(AR)=séu15. @) this boundary condition restrict_s the systems bounded in th_e
space and only the temporal singular behavior can appear in
Therefore from the above two equations, we have the solutions. Actually in other approaches for the perturbed
evolution equations such as IST, the solutions are always
éuO(AR):S[Nl[Uo]]\\- (8) supposed to have the same asymptotic behavior: when spa-

tial coordinate goes to infinity, the solutions vanish. It is clear
After some simple reduction we can get the proto-RG equamat in this case we can consider the temporal secular terms
tion of Ag. It is obviously from Eq(8) that in this approach, only. Now we find simplyF=4. .
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If we apply $=PF to u,q, it must be identical to the Hereug(Ag,xo)=2A3 seck z. Put it into Eq.(23), in the

coefficient ofd,(z) on the right-hand sidéhs) of the first-
order equatior{12), thus we have
(17)

éulszfo,

where

(18)

— o0

f0=f mlle[uo]dbo(z)dz,

i.e., this scalar produ¢tb,- R;[ ug]) realizes the needed pro-

jection in the proto-RG operator.

We now apply the proto-RG operatéron the renormal-
ized perturbation resultl5), then we obtain

S(uo(xr))=eSuss. (19
However,
F(uo(xr))=— xr(7)sech z. (20
Then we have
S(uo(xr))=~ %Xé(t)- (21)

Combine Eq.(17) with Eqg. (21), we get the proto-RG
equation as

dXR \/§ 3(+*.
T —s7fo— _SZJ’% Ri[ug]seclt zdz (22

first order, we have

[o+ASLTus =Ryl uo], (27)

where

. d

L=—+(12 sech z—4)a——24tanrzsecﬁ z. (28
Jz z

Notice that there are two eigenfunctionsiaf one is®(z)

=tanhzsecl z, which satisfiesI:<I>0=0, and the other is

®,(2)=(1—ztanhz)seck z, which satisfies.®;=—8®,,

[12].

To show the special structure of the operatariearly, we
can define the subspac8] of L spanned by the degenerate
zero eigenfunctionsby and ®. In the null space the two
basis vectorsb, and®, are denoted as

1 0
by= 0 and &= 1) (29
then the operatot can be expressed as the matrix
. 0 1
L=-8 0 0 (30

It is easy to validate the relationf®,=0 and L®,
- — 8(1)0

We know the two degenerate zero eigenfunctions are the
source of the secular termsung, and we can express; in
terms of the vector®, and®,

The important equation that determines how the soliton

position is affected by the perturbation is also consistent with

those derived by the other methdd®,11].

Ill. PROTO-RG THEORY FOR THE PERTURBED KdV
EQUATION

Now we turn to the perturbed KdV equation

U+ BU U+ Uy = e R[ UT. (23)
The KdV equation
Uy + BU U, + Uy =0 (24)
has a single soliton solution such as
u=2A3seck z, z=Ao(x—¢&), E=4A%t+xo, 5
5

whereA, is the amplitude ang is the initial position of the
soliton.

uls: SO(D0+ Sl(bl! (31)
where thes, ands; are the coefficients of components,
and®, of u;s. Hereuys is the singular term iru; and the
regular terms are ignored. Now we can rewrite the first-order
equation(27) in the null space Q) as

fo
fl)’

wheref, andf, are the coefficients of components, and
@, of rhs of the first-order equatiof27). Then we have the
following equations:

(32

[a&ASE](ji) -

9:So=8A3s:+fo, (33

o"tsl =f 1- (34)

Before further calculation, we would like to point out that
in Eq. (30) the original differential operatdr has a “Jordan

For convenience, we discuss it in terms of new variablegell” in its matrix expression, and it is somewhat different
{t,z}. To proceed, we constructsaperturbation to this equa- from the simple structure of operator in Sec. Il, which has

tion,

u=ug(Ag,xo) Feuy(t,z)+---. (26)

only one zero eigenfucntiohsee Eq.(13)], then a slight
modification is necessary for the projection of the proto-RG
operator as we will show in the following.
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We can introduce the renormalizég; and yg:

[

Ao=Z,(T)Ag=|1+>, a,e"|Ag,
1

Xo=Z(7)xr= XR- (35

1+, bye"
1

Then the Eq(26) can be written as the renormalized pertur-

bation result,
U=Uo(Ag,xr) te[us(t) —Uss(t, )]+ -, (36)
where the renormalization constants are chosen as

4A2Ra1(131+ 4A%(XRbl+ 8A2Ra1t)(1)0+ Uls(t, ’T) =0.
(37)

If we apply S=PF to u;5 (hereF=4,), the operato®

will contain two projectiongwhich is slightly different from

PHYSICAL REVIEW E66, 046625 (2002

Combine Eq.(38) with Eq. (43) corresponding to the
componentb; and Eq.(39) with Eq. (44) corresponding to
the componentb,, we get the proto-RG equation as

P _, L= 1f+wR R zdz (45
W—84—AR 1—84—AR . 1[U0]SeC 207 ( )
dXR_ 1 f
Eayelt

1 (+=
:gmfx R,[Uo](tanhz+zseclt z)dz, (46)
R

which in this case consists of two independent equations.
The whole process gives the result

the case of only one projection in the present proto-RGand

method: one is ond, and the other is od,, which can be

read from Eqgs(33) and(34). From them we find
Sus=t4 (39

for projection ond; and

u(x,t)=2A%seclt z, A=Ag, z=A(x—¥§),
E=4A%t+ xR, (47)
an_. 2 R K zd 48
rra TN [ug]sech zdz (48)

d§—4A2 ! FwR h K z)d

qi- +sm o [ug](tanhz+z sech z)dz.

(49

Su;s=8A3s, +f, (39)

The two important equations that determine how the soliton
shape and position are affected by the perturbation are also
consistent with those derived by I1$T,2].

As an example, we consider the damping KdV equation in
which R[u]=—u. The time dependence of the soliton pa-
i.e., this scalar product realizes the needed projection in thEmeters can be easily obtained from E(&8) and (49).
proto-RG operator, whereV,(z)=tanhz+zseclf z and  Thus we have
¥,(z)=secl z are the adjoint function of®y(z) and

for projection on®,. Here

f= f " Riluol¥ i (2)dz, (40

—o0

2¢t
d4(2). X A=A, exp( - T) : (50
We now apply the proto-RG operat8ron the renormal-
ized perturbation resul36), then we obtain 3 det
&
; . E=—A; 1—exp<—— , (51)
S(uo(Ar, xr))=¢Suss. (41) e 3

However, which is just the same as that obtained by [33].
Then we consider another example, the KdV-Burgers
F(Uo(Ar, XR)) = 4AR(T)AR(T)1(2) +[32A(DAR(1)t  eauation
+AA3(T) xR(T)]Po(2). (42 Ut BU U+ Uy = €Uy - (52
Then we find In the same way, we obtain
S(uo(Ar . XR))=4ARA (43) Al A106 | 53
for projection ond; and 1+ 1—58tA§
S(Uo(Ar ,Xr))=32ARARt + 4ARXR (44 " 1
S - 2
for projection ond,,. €= g N\ 1t 158tA°>’ (54

046625-4
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which is also the same as that derived by [3%]. 52 pr:
Li=—+2sech z—1, L,=— +6sech z—1.
IV. PROTO-RG THEORY FOR THE PERTURBED NLS 9z 9z
EQUATION

In the above section, we have pointed out the specialt is easy to derive that®,=0, L,®,=—-2V,, L,¥,
structure of the null subspace of the linearized first-order=0, and L[,¥,=2®; with &,(z)=sectz, D,(2)
equation of the perturbed KdV equation and then suggesteét zsechz, ¥1(z)=(1—ztanhz)sech z,¥2(z)=tanhzsech z
an extended proto-RG approach for it. Since the approach g.5].

a natural one from the RG point of view, we believe that this  Then we notice thatt , andL, have the structures similar

method is easy to follow and is used for perturbed NLS . -
: S ) to the above section and we can construct a hew opelator
equation. Now we will give the details of the process.

(62

We consider the perturbed NLS equation connecting with_; andL, and define the subspac@) of L
spanned by the four degenerate zero eigenfunctionsd,,
iU+ Ut 2lul2u=isRIul. 55 V¥4, and¥,. In the null space the four basis vectobs,
Ut 2] sRlul ©9 ®,, ¥,, and¥, are denoted as
The NLS equation 1 0 0 0
iU+ Uy, +2|u?u=0 (56) 0 1 0 0
(I)lz ’ \1,1: ’ \1,2_ ’ CI)Z_ ’
. . : 0 0 1 0
has a single soliton solution such as
_ 0 0 0 1
u=2B0e " secte, (63
7=2Bo(x— &), &=—4agt+ xo, where the operatdr can be expressed as the matrix
9=2ap(x— &)+ 8, 6=—4(ad+Bit+2agx0+ 8y, 0200
(57) . |0 0 0 O
L= 00 0 2l (64)
wheref, is the amplitudeg, is the propagating velocityg
is the initial position, and, is the initial phase of the soli- 0 000
ton. . . .
We expand it ine series and in terms of new coordinates It is €asy to verify the relatioh ®,=0, LW, =2®,, LW,
{t,z}, =0, andL®,=2V,.
We know these four degenerate zero eigenfunctions are
U=Ug(ag,Bo:X0,0) +euy(t,z)+---. (58  the source of the secular termsin,, and we can assume

, that the expression, i.e., expangs in the null space with
Here uo(ap,Bo,x0,00)=2B0e”'"secte. Put it into EQ. their basis vectors:
(55), in the first order, we have '
Uis= eilﬂ[Als"'iBls]

- - 2.2 .
i 9,Uy + 8i agBod,Ur + 4 B535us + 4|Ug|?Us + 2ugu4] e s W+ 8, Wt v byt iv,d,].  (65)

=Raluo], (59 Now we rewrite the coupled equatiof®0) and (61) in the

where the overbar denotes the complex conjugate. To avoi'aUII space () as

the awkward calculation in complex plane, we can reduce it

to coupled real equations by defining e 91
. 27 U2 _ gZ

u;=e 9[A;+iB,], [dy+4B5L ] s ||t | (66)
S2 fa

whereA; andB; are the real and imaginary parts of it. Now

we can rewrite Eq(59) into the following coupled real equa- where thef, ,f, are the coefficients of componenis, and

tions: W, of rhs of the first-order equatiof®0) and theg,,g, are
A 4B Br=ReRiel ) (60 order equationd. Then we have the following equations:
9:B1—4B3L,A; =Im[R,e'’]. (61) dv1=8B551+ 01, (67)

Here Av2=0s, (68)
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&t51= fl y (69)

&tSZZSﬂsz-i-fz. (70)

Before further calculation, we would like to point out that

in Eq. (64), the original differential operatotls; andL, have

PHYSICAL REVIEW E66, 046625 (2002

i.e., this scalar product realizes the needed projection in the

proto-RG operator.

We now apply the proto-RG operat8ron the renormal-
ized perturbation resulf73), then we obtain

é(uo(aRyﬁR,XR-éR)):8éU15- (80)

a four dimensional “Jordan cell” in their matrix expression |, ever

L4, similar to the structure of Eq30) in the case of the KdV

equation. Then a treatment similar to that in Sec. Ill can be Fuy=exp(—i9)[2B85V1—4B4(4akt— xRV,

performed in the following.
Then introduce the renormalized parameters as
Br=23 (7)o,

ar=2; (1) ay, Xr=23 ()Xo,

Or=2,(7) 60, (72)
Z;=1+2, ae", Z,=1+, be",
1 1
Zs=1+2, che", Z,=1+, dne", (72)
1 1

—i(4apBrxr— 16BRBRL+2BrIR) P 1— 2i afdy].

and we have the following renormalized perturbation resultsor projection oW,

U=Ug(ar,Br,Xr,0r) T e[Us(t) —Ug(t,7)]+-- -,
(73

where the renormalization constants are chosen as
e "'[2b, ¥~ 4BE(4a1art— Ci1xR) Vo~ i (421 arBRYR
- 16b1ﬁgt + ZdllBR5R)q)l_ i ZalaRq)z] + ulS(tl T) =0.
(74)

If we apply S=PF to u; (hereF=4,), the operatoP
will contain four projections: onb,,®,, and onV¥,,V,,
which can be read from Eq&67)—(70). From them we get

Sus=8B3s1+ 01 (79
for the projection ond,,
éuls: 92 (76)
for the projection onb,,
Sugs=t, (77
for the projection onb,,
Su1s=8B&v,+f (78)
for the projection oriV,. Here
+ o0 N .
fi:J R R.e'"d;(2)dz,
+ oo “ .
gi:f Im[R.e'’1¥;(2)dz, (79

(81)
Then we have

Suo=—(4apBrxr— 16BRBRI+2BrR)  (82)

for projection on®,,
éUOZ — 2&’(;{ (83)

for projection on®,,
Suo=2B% (84)
Suo=—4Bx(4art— xp) (85)

for projection onW,.

Combine Eqs(75)—(78) with Egs.(82)—(85) correspond-
ing to each component dd, we get the proto-RG equation
as

dag 1 6
at 29

dBr 1

F_Szfll (87)
d f

ﬁZS_Z' (89)

dt - 4p2

dor (o1 (89

W=—82—’8R+8XR92,

which in this case consists of four independent equations.
Finally, the above process gives the result

u(x,t)=2Be """ secty,
z=2B(x—§),

5= —4(a’+ BH)t+2ayxr+ Or
(90)

B=Br,
V=2a(x— &)+ 6,

a=ag, &= —4dat+ xR,

and

A eig,= 1f+x| Rye "Jtanhz secte d
a——szgz——sz ) m[ R,e'V]tanhz sechzdz
91

dg 1 L we
S_flzng R R,e'V]sectzdz (92

dt 2 e

046625-6
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d f
—§:—4(1+8—2

dt 432
1ot o
:_4a+8—f R R,e'V]zsechzdz 93
2. ReRe] (93

do dé¢
R 2_ 2 _2
at A« B)-I—Zadt

+ oo
— &5

25 Im[R,e'"](1—ztanhz)sechzdz

94

PHYSICAL REVIEW &5, 046625 (2002

TDGL. It is, however, clear from what follows that this does
not restrict the general nature of the method for another per-
turbed evolution equations.

On the other hand, the present proto-RG meth®d]
demonstrates its principle with various examples focusing on
the case of only one zero eigenfunction in the first-order
equation, however, in this paper we apply it to include the
case of degenerate zero eigenfucntions, which has more than
one source for the secular terms, then when we use the
proto-RG operator om,g; it should be classified into the
different projection on each zero eigenfucntion and the re-
sulting in proto-RG equation can be read from each one eas-
ily. The standard RG version of soliton perturbation can be
found in Ref[17], whereas they do not obtain the the second

The two important equations that determine how the solitorRG equatior(49) for KdV because they concentrate on only
shape and position are affected by the perturbation are alsgne zero eigenfunctio®, and neglect the discussion about

consistent with those derived by 19T,16].

V. CONCLUSION

the other degenerate eigenfunctidi.)
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