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Renormalization group theory for perturbed evolution equations
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We show that proto-RG~renormaliation group! theory can be used to give a systematic description of the
evolution of soltion of perturbed equations. The equations describing the deformation of its shape as the effect
of perturbation are proto-RG equations. The RG approach may be simpler than inverse scattering theory~IST!
and another approaches, because it dose not rely on any knowledge of IST. It is very concise and easy to
understand.
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I. INTRODUCTION

The standard soliton equations~KdV, NLS and so on! are
highly idealized. In more realistic situations, it is importa
to understand nonlinear evolution equations under the in
ence of perturbations@1#. Several different approaches to th
analytic description of soliton dynamics in these perturb
systems are known. The most powerful method to deal w
these cases is based on IST~inverse scattering theory! @2,3#.
The basic idea of IST is to represent a nonlinear evolut
equation for a functionu(x,t) in the form of the so-called

Lax pair (L̂, Â), L̂ t1@ L̂, Â#50, whereL̂ andÂ are some
linear operators with coefficients dependent on the func
u(x,t). First, we can solve the direct scattering problem, i
solving the auxiliary linear equationsL̂C5lC and C t

5ÂC. From the first equation we can find the scatteri
data, and from the second equation, we can find the temp
evolution of the scattering data. Then we can construct
functionu(x,t) on the basis of the scattering data, i.e., so
the inverse scattering problem. The whole process is ef
tive for integrable systems and it turns out that for any n
linear evolution equation that is reasonably close to a n
linear evolution equation that can be exactly solved by I
the total evolution of the scattering data can be given
also be expanded in a perturbation expansion. That is to
that we can perform a perturbation theory for the above
auxiliary linear equations. Thus one can determine the eff
of perturbations such as small dissipations, relaxations,
on the evolution of these scattering data, and further,
effects on the soliton states. However, it is inconvenien
use for one who is not familiar with IST.

Another alternative way to study soliton perturbations
the so-called direct perturbation theory based on a stan
multiple scales procedure@4–6#. In this scheme, a basi
technical ingredient is to linearize original nonlinear equ
tions on the background of the unperturbed solution for t
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ing a perturbation into account by rewriting them in terms
multiple scale variables~‘‘fast’’ and ‘‘slow’’ !. Then the time
dependence of the soliton parameters and the first-order
rection are readily available. The original work with impo
tant contribution to the direct method by constructing
Green’s function process would be highly recommended@4#.

In this paper, we perform a renormalization group~RG!
approach@7# to the perturbed soliton equations and comp
the result with other methods. One purpose of the pres
paper is to demonstrate that an analytic description of
evolution of a soliton, including the deformation of its shap
can be given, and the equations describing the evolution
the soliton amplitude and velocity as the effect of perturb
tion are RG equations. The apparent advantage of the
approach is that the starting point is simply a straightforw
naive perturbation expansion for which very littlea priori
knowledge is required. We also see that the RG appro
may be more efficient and concise in practice than ot
methods.

We also notice that the so-called proto-RG scheme
been proposed recently@8,9#. The method does not need th
explicit perturbation solutions that are required in the st
dard RG, so the process in this scheme is much simple
the original standard RG. It is very natural to use t
proto-RG scheme to deal with these perturbed soliton eq
tions. The present scheme has been illustrated with m
examples that involve only one zero eigenfunction in t
first-order equation@8,9#. However, for these perturbed sol
ton equations, the zero eigenfunctions of the first-order eq
tion are usually degenerate, and we should consider s
important information about the source of the secular ter
in this case when we employ the proto-RG method. T
other purpose of the our paper is to give some import
examples that are treated very well in the present versio
proto-RG.

In Secs. II, III, and IV, the details of proto-RG perturb
tive calculation are supplied for the perturbed time dep
dent Ginzbury-Landau~TDGL! equation, the perturbed KdV
equation, and the perturbed NLS equation. Section V clo
the paper with our conclusions and some expectations.
©2002 The American Physical Society25-1
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II. PROTO-RG FOR THE PERTURBED TDGL EQUATION

We begin this section with the a simple description
proto-RG~See Refs.@8,9#, for those who wish to know the
details of the proto-RG method, the second Ref.@9# of Shi-
wa’s should be a good starting point.! For a perturbed prob
lem

L̂~]x!u5«N̂@u#, ~1!

wherex denotes all the independent spatial and/or temp
variables, the unperturbed equation and the first-order e
tion are

L̂~]x!u050 ~2!

and

L̂~]x!u15N̂1@u0#. ~3!

HereL̂ is a linear differential operator,N̂ is generally a non-
linear operator andN̂1 is the«th order terms ofN̂. We can
write its perturbation result as

u5u0~A!1«u1~x!1•••, ~4!

whereA denotes all the constants such as amplitude or ph
to be renormalized in the following. Here proto-RG sche
does not need the explicit expression of perturbation res
while the standard RG requires it. We introduceX and renor-
malizedAR and denoteu1s as the singular terms ofu1 with
variablesx replaced byX. Then the renormalized perturba
tion series reads

u5u0~AR!1«@u1~x!2u1s~x,X!#1•••. ~5!

The proto-RG operatorŜ can be constructed as follows
We split the differential operators]x to ]x1]X in L̂ and
subtract the original operator to makeF̂5L̂(]x1]X)
2L̂(]x). Then combineF̂ with the operatorP̂ corresponding
to the projection onto the null space ofL̂. Finally, identify
x5X in the result. The overall process defines the proto-
operatorŜ5 P̂F̂.

We applyŜ to u1s and from the first-order equation~3!,
we can read the outcome as

Ŝu1s5†N̂1@u0#‡i , ~6!

where@ # i denotes the projection onto the null space ofL̂. We
can also applyŜ to renormalized result~5! and we obtain

Ŝu0~AR!5«Ŝu1s . ~7!

Therefore from the above two equations, we have

Ŝu0~AR!5«†N̂1@u0#‡i . ~8!

After some simple reduction we can get the proto-RG eq
tion of AR . It is obviously from Eq.~8! that in this approach
04662
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if one knows the zero eigenfunction ofL̂, one can almost
read off the final result by inspection.

Now we use the above method to deal with the perturb
TDGL equation

ut2
1

2
uxx2u1u35«R@u#. ~9!

The TDGL equation has a single-soliton solution

u0~x,t !5tanhz, z5x2x0 , ~10!

wherex0 is the initial position.
To proceed, we transfer the variables from$t,x% to $t,z%

and perform a«th perturbation to this equation,

u5u0~x0!1«u1~ t,z!1•••. ~11!

In the first order, we find

@] t2L̂#u15R̂1@u0#, ~12!

where

L̂5
1

2
]zz1123u0

25
1

2
]zz13 sech2 z22 ~13!

is a self-adjoint operator andF0(z)5A3/2 sech2 z is the
zero eigenfunction ofL̂ @10#. We can introduce the renorma
ized xR :

x05Z1~t!xR5F11(
1

`

an«nGxR, ~14!

and the renormalized result to the first order is

u5u0~xR!1«@u1~ t !2u1s~ t,t!#1•••, ~15!

where the renormalization constanta1 is chosen as

2xRa1 sech2z1u1s~ t,t!50. ~16!

The reader may wonder why we neglect the introduct
of Z to replacez in u1s , i.e., the spatial singular behavior
omitted in this case. For partial differential equation, w
should consider the spatial as well as temporal singular
havior generally. In Refs.@8# and @9#, the authors discuss
space-time behavior of numerous examples such as S
Hohenberg equation, etc. In those systems no spatial or
poral constraints are imposed, therefore secular terms
emerge in spatial as well as in temporal parts. However
the evolution equations of the present paper, we always s
the solutions~of our interest! which vanish in infinity, i.e.,
this boundary condition restricts the systems bounded in
space and only the temporal singular behavior can appea
the solutions. Actually in other approaches for the perturb
evolution equations such as IST, the solutions are alw
supposed to have the same asymptotic behavior: when
tial coordinate goes to infinity, the solutions vanish. It is cle
that in this case we can consider the temporal secular te
only. Now we find simplyF̂5]t .
5-2
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If we apply Ŝ5 P̂F̂ to u1s , it must be identical to the
coefficient ofF0(z) on the right-hand side~rhs! of the first-
order equation~12!, thus we have

Ŝu1s5 f 0 , ~17!

where

f 05E
2`

1`

R̂1@u0#F0~z!dz, ~18!

i.e., this scalar product^F0•R̂1@u0#& realizes the needed pro
jection in the proto-RG operator.

We now apply the proto-RG operatorŜ on the renormal-
ized perturbation result~15!, then we obtain

Ŝ„u0~xR!…5«Ŝu1s . ~19!

However,

F̂„u0~xR!…52xR8 ~t!sech2 z. ~20!

Then we have

Ŝ„u0~xR!…52
2

A3
xR8 ~ t !. ~21!

Combine Eq.~17! with Eq. ~21!, we get the proto-RG
equation as

dxR

dt
52«

A3

2
f 052«

3

4E2`

1`

R̂1@u0#sech2 zdz. ~22!

The important equation that determines how the soli
position is affected by the perturbation is also consistent w
those derived by the other methods@10,11#.

III. PROTO-RG THEORY FOR THE PERTURBED KdV
EQUATION

Now we turn to the perturbed KdV equation

ut16uux1uxxx5«R̂@u#. ~23!

The KdV equation

ut16uux1uxxx50 ~24!

has a single soliton solution such as

u52A0
2 sech2 z, z5A0~x2j!, j54A0

2t1x0 ,
~25!

whereA0 is the amplitude andx0 is the initial position of the
soliton.

For convenience, we discuss it in terms of new variab
$t,z%. To proceed, we construct a« perturbation to this equa
tion,

u5u0~A0 ,x0!1«u1~ t,z!1•••. ~26!
04662
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Here u0(A0 ,x0)52A0
2 sech2 z. Put it into Eq.~23!, in the

first order, we have

@] t1A0
3L̂#u15R̂1@u0#, ~27!

where

L̂5
]3

]z3
1~12 sech2 z24!

]

]z
224 tanhz sech2 z . ~28!

Notice that there are two eigenfunctions ofL̂: one isF0(z)
5tanhzsech2 z, which satisfiesL̂F050, and the other is
F1(z)5(12z tanhz)sech2 z, which satisfiesL̂F1528F0
@12#.

To show the special structure of the operatorL̂ clearly, we
can define the subspace (V) of L̂ spanned by the degenera
zero eigenfunctionsF0 and F1. In the null space the two
basis vectorsF0 andF1 are denoted as

F05S 1

0D and F15S 0

1D , ~29!

then the operatorL̂ can be expressed as the matrix

L̂528S 0 1

0 0D . ~30!

It is easy to validate the relationsL̂F050 and L̂F1
528F0.

We know the two degenerate zero eigenfunctions are
source of the secular terms inu1s , and we can expressu1s in
terms of the vectorsF0 andF1,

u1s5s0F01s1F1 , ~31!

where thes0 and s1 are the coefficients of componentsF0
andF1 of u1s . Hereu1s is the singular term inu1 and the
regular terms are ignored. Now we can rewrite the first-or
equation~27! in the null space (V) as

@] t1A0
3L̂#S s0

s1
D 5S f 0

f 1
D , ~32!

where f 0 and f 1 are the coefficients of componentsF0 and
F1 of rhs of the first-order equation~27!. Then we have the
following equations:

] ts058A0
3s11 f 0 , ~33!

] ts15 f 1 . ~34!

Before further calculation, we would like to point out th
in Eq. ~30! the original differential operatorL̂ has a ‘‘Jordan
cell’’ in its matrix expression, and it is somewhat differe
from the simple structure of operator in Sec. II, which h
only one zero eigenfucntion@see Eq.~13!#, then a slight
modification is necessary for the projection of the proto-R
operator as we will show in the following.
5-3
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We can introduce the renormalizedAR andxR :

A05Z1~t!AR5F11(
1

`

an«nGAR ,

x05Z2~t!xR5F11(
1

`

bn«nGxR . ~35!

Then the Eq.~26! can be written as the renormalized pertu
bation result,

u5u0~AR ,xR!1«@u1~ t !2u1s~ t,t!#1•••, ~36!

where the renormalization constants are chosen as

4AR
2a1F114AR

3~xRb118AR
2a1t !F01u1s~ t,t!50.

~37!

If we apply Ŝ5 P̂F̂ to u1s ~here F̂5]t), the operatorP̂
will contain two projections~which is slightly different from
the case of only one projection in the present proto-
method!: one is onF0 and the other is onF1, which can be
read from Eqs.~33! and ~34!. From them we find

Ŝu1s5 f 1 ~38!

for projection onF1 and

Ŝu1s58AR
3s11 f 0 ~39!

for projection onF0. Here

f i5E
2`

1`

R̂1@u0#C i~z!dz, ~40!

i.e., this scalar product realizes the needed projection in
proto-RG operator, whereC0(z)5tanhz1zsech2 z and
C1(z)5sech2 z are the adjoint function ofF0(z) and
F1(z).

We now apply the proto-RG operatorŜ on the renormal-
ized perturbation result~36!, then we obtain

Ŝ„u0~AR ,xR!…5«Ŝu1s . ~41!

However,

F̂„u0~AR ,xR!…54AR~t!AR8 ~t!F1~z!1@32AR
4~t!AR8 ~t!t

14AR
3~t!xR8 ~t!#F0~z!. ~42!

Then we find

Ŝ„u0~AR ,xR!…54ARAR8 ~43!

for projection onF1 and

Ŝ„u0~AR ,xR!…532AR
4AR8 t14AR

3xR8 ~44!

for projection onF0.
04662
e

Combine Eq.~38! with Eq. ~43! corresponding to the
componentF1 and Eq.~39! with Eq. ~44! corresponding to
the componentF0, we get the proto-RG equation as

dAR

dt
5«

1

4AR
f 15«

1

4AR
E

2`

1`

R1@u0#sech2 zdz, ~45!

dxR

dt
5«

1

4AR
3

f 0

5«
1

4AR
3E

2`

1`

R2@u0#~ tanhz1z sech2 z!dz, ~46!

which in this case consists of two independent equations
The whole process gives the result

u~x,t !52A2 sech2 z, A5AR , z5A~x2j!,

j54A2t1xR , ~47!

and

dA

dt
5«

1

4AE2`

1`

R@u0#sech2 zdz, ~48!

dj

dt
54A21«

1

4A3E2`

1`

R@u0#~ tanhz1z sech2 z!dz.

~49!

The two important equations that determine how the soli
shape and position are affected by the perturbation are
consistent with those derived by IST@1,2#.

As an example, we consider the damping KdV equation
which R@u#52u. The time dependence of the soliton p
rameters can be easily obtained from Eqs.~48! and ~49!.
Thus we have

A5A0 expS 2
2«t

3 D , ~50!

j5
3

«
A0

2F12expS 2
4«t

3 D G , ~51!

which is just the same as that obtained by IST@13#.
Then we consider another example, the KdV-Burg

equation

ut16uux1uxxx5«uxx . ~52!

In the same way, we obtain

A5
A0

A11
16

15
«tA0

2

, ~53!

j5
15

4«
lnS 11

16

15
«tA0

2D , ~54!
5-4
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which is also the same as that derived by IST@14#.

IV. PROTO-RG THEORY FOR THE PERTURBED NLS
EQUATION

In the above section, we have pointed out the spe
structure of the null subspace of the linearized first-or
equation of the perturbed KdV equation and then sugge
an extended proto-RG approach for it. Since the approac
a natural one from the RG point of view, we believe that t
method is easy to follow and is used for perturbed N
equation. Now we will give the details of the process.

We consider the perturbed NLS equation

iut1uxx12uuu2u5 i«R̂@u#. ~55!

The NLS equation

iut1uxx12uuu2u50 ~56!

has a single soliton solution such as

u52b0e2 iq sechz,

z52b0~x2j!, j524a0t1x0 ,

q52a0~x2j!1d, d524~a0
21b0

2!t12a0x01d0 ,
~57!

whereb0 is the amplitude,a0 is the propagating velocity,x0
is the initial position, andd0 is the initial phase of the soli
ton.

We expand it in« series and in terms of new coordinat
$t,z%,

u5u0~a0 ,b0 ,x0 ,d0!1«u1~ t,z!1•••. ~58!

Here u0(a0 ,b0 ,x0 ,d0)52b0e2 iq sechz. Put it into Eq.
~55!, in the first order, we have

i ] tu118ia0b0]zu114b0
2]z

2u114uu0u2u112u0
2ū1]

5R̂1@u0#, ~59!

where the overbar denotes the complex conjugate. To a
the awkward calculation in complex plane, we can reduc
to coupled real equations by defining

u15e2 iq@A11 iB1#,

whereA1 andB1 are the real and imaginary parts of it. No
we can rewrite Eq.~59! into the following coupled real equa
tions:

] tA114b0
2L̂1B15Re@R̂1eiq#, ~60!

] tB124b0
2L̂2A15Im@R̂1eiq#. ~61!

Here
04662
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L̂15
]2

]z2
12 sech2 z21, L̂25

]2

]z2
16 sech2 z21.

~62!

It is easy to derive thatL̂1F150, L̂1F2522C2 , L̂2C2

50, and L̂2C152F1 with F1(z)5sechz, F2(z)
5z sechz, C1~z!5~12z tanhz)sech z,C2~z!5tanhz sech z
@15#.

Then we notice thatL̂1 andL̂2 have the structures simila
to the above section and we can construct a new operatL̂

connecting withL̂1 andL̂2 and define the subspace (V) of L̂
spanned by the four degenerate zero eigenfunctionsF1 , F2 ,
C1, and C2. In the null space the four basis vectorsF1 ,
F2 , C1, andC2 are denoted as

F15S 1

0

0

0

D , C15S 0

1

0

0

D , C25S 0

0

1

0

D , F25S 0

0

0

1

D ,

~63!

where the operatorL̂ can be expressed as the matrix

L̂5S 0 2 0 0

0 0 0 0

0 0 0 2

0 0 0 0

D . ~64!

It is easy to verify the relationL̂F150, L̂C152F1 , L̂C2

50, andL̂F252C2.
We know these four degenerate zero eigenfunctions

the source of the secular terms inu1s , and we can assum
that the expression, i.e., expandu1s in the null space with
their basis vectors:

u1s5e2 iq@A1s1 iB1s#

5e2 iq@s1C11s2C21 iv1F11 iv2F2#. ~65!

Now we rewrite the coupled equations~60! and ~61! in the
null space (V) as

@] t14b0
2L̂# S v1

v2

s1

s2

D 5S g1

g2

f 1

f 2

D , ~66!

where thef 1 , f 2 are the coefficients of componentsC1 and
C2 of rhs of the first-order equation~60! and theg1 ,g2 are
the coefficients of componentsF1 andF2 of rhs of the first-
order equation~61!. Then we have the following equations

] tv158b0
2s11g1 , ~67!

] tv25g2 , ~68!
5-5
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] ts15 f 1 , ~69!

] ts258b0
2v21 f 2 . ~70!

Before further calculation, we would like to point out th
in Eq. ~64!, the original differential operatorsL̂1 andL̂2 have
a four dimensional ‘‘Jordan cell’’ in their matrix expressio
L̂1, similar to the structure of Eq.~30! in the case of the KdV
equation. Then a treatment similar to that in Sec. III can
performed in the following.

Then introduce the renormalized parameters as

aR5Z1
21~t!a0 , bR5Z2

21~t!b0 , xR5Z3
21~t!x0 ,

dR5Z4
21~t!d0 , ~71!

Z1511(
1

`

an«n, Z2511(
1

`

bn«n,

Z3511(
1

`

cn«n, Z4511(
1

`

dn«n, ~72!

and we have the following renormalized perturbation res

u5u0~aR ,bR ,xR ,dR!1«@u1~ t !2u1s~ t,t!#1•••,
~73!

where the renormalization constants are chosen as

e2 iq@2b1bRC124bR
2~4a1aRt2c1xR!C22 i ~4a1aRbRxR

216b1bR
3 t12d1bRdR!F12 i2a1aRF2#1u1s~ t,t!50.

~74!

If we apply Ŝ5 P̂F̂ to u1s ~here F̂5]t), the operatorP̂
will contain four projections: onF1 ,F2, and onC1 ,C2,
which can be read from Eqs.~67!–~70!. From them we get

Ŝu1s58bR
2s11g1 ~75!

for the projection onF1,

Ŝu1s5g2 ~76!

for the projection onF2,

Ŝu1s5 f 1 ~77!

for the projection onC1,

Ŝu1s58bR
2v21 f 2 ~78!

for the projection onC2. Here

f i5E
2`

1`

Re@R̂1eiq#F i~z!dz,

gi5E
2`

1`

Im@R̂1eiq#C i~z!dz, ~79!
04662
e

t:

i.e., this scalar product realizes the needed projection in
proto-RG operator.

We now apply the proto-RG operatorŜ on the renormal-
ized perturbation result~73!, then we obtain

Ŝ„u0~aR ,bR ,xR ,dR!…5«Ŝu1s . ~80!

However,

F̂u05exp~2 iq!@2bR8C124bR
2~4aR8 t2xR8 !C2

2 i ~4aR8bRxR216bR
2bR8 t12bRdR8 !F122iaR8F2#.

~81!

Then we have

Ŝu052~4aR8bRxR216bR
2bR8 t12bRdR8 ! ~82!

for projection onF1,

Ŝu0522aR8 ~83!

for projection onF2,

Ŝu052bR8 ~84!

for projection onC1,

Ŝu0524bR
2~4aR8 t2xR8 ! ~85!

for projection onC2.
Combine Eqs.~75!–~78! with Eqs.~82!–~85! correspond-

ing to each component ofV, we get the proto-RG equatio
as

daR

dt
52«

1

2
g2 , ~86!

dbR

dt
5«

1

2
f 1 , ~87!

dxR

dt
5«

f 2

4bR
2

, ~88!

ddR

dt
52«

g1

2bR
1«xRg2 , ~89!

which in this case consists of four independent equation
Finally, the above process gives the result

u~x,t !52be2 iq sechz,

b5bR , a5aR , z52b~x2j!, j524at1xR ,

q52a~x2j!1d, d524~a21b2!t12axR1dR
~90!

and

da

dt
52«

1

2
g252«

1

2E2`

1`

Im@R̂1eiq#tanhz sechzdz,

~91!

db

dt
5«

1

2
f 15«

1

2E
1`

Re@R̂1eiq#sechzdz, ~92!

2`
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dj

dt
524a1«

f 2

4b2

524a1«
1

4b2E2`

1`

Re@R̂1eiq#z sechzdz, ~93!

dd

dt
54~a22b2!12a

dj

dt

2«
1

2bE2`

1`

Im@R̂1eiq#~12z tanhz!sechzdz.

~94!

The two important equations that determine how the soli
shape and position are affected by the perturbation are
consistent with those derived by IST@1,16#.

V. CONCLUSION

In summary, we have demonstrated that a perturbed K
equation can be solved by a proto-RG method, with so
attendant technical advantages compared with the o
methods. The present approach can easily be genera
also to multiple-soliton state and to the soliton-soliton int
action. To avoid unnecessary complications, we expound
theory using as example the three equations: KdV, NLS,
nd
en
d,
s

n,

n
La
Bu

c.

-

04662
n
lso

V
e
er
ed
-
ur
d

TDGL. It is, however, clear from what follows that this doe
not restrict the general nature of the method for another p
turbed evolution equations.

On the other hand, the present proto-RG method@8,9#
demonstrates its principle with various examples focusing
the case of only one zero eigenfunction in the first-ord
equation, however, in this paper we apply it to include t
case of degenerate zero eigenfucntions, which has more
one source for the secular terms, then when we use
proto-RG operator onu1s ; it should be classified into the
different projection on each zero eigenfucntion and the
sulting in proto-RG equation can be read from each one e
ily. The standard RG version of soliton perturbation can
found in Ref.@17#, whereas they do not obtain the the seco
RG equation~49! for KdV because they concentrate on on
one zero eigenfunctionF0 and neglect the discussion abo
the other degenerate eigenfunctionF1.!
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